Понятия со словосочетанием «статистический вывод»

Статистический вывод (англ. statistical inference), также называемый индуктивной статистикой (англ. inferential statistics, inductive statistics) — обобщение информации из выборки для получения представления о свойствах генеральной совокупности.

Связанные понятия

Эмпирические исследования – наблюдение и исследование конкретных явлений, эксперимент, а также обобщение, классификация и описание результатов исследования эксперимента, внедрение их в практическую деятельность человека.
Автокорреляция — статистическая взаимосвязь между последовательностями величин одного ряда, взятыми со сдвигом, например, для случайного процесса — со сдвигом по времени.
Гетероскедастичность (англ. heteroscedasticity) — понятие, используемое в прикладной статистике (чаще всего — в эконометрике), означающее неоднородность наблюдений, выражающуюся в неодинаковой (непостоянной) дисперсии случайной ошибки регрессионной (эконометрической) модели. Гетероскедастичность противоположна гомоскедастичности, означающей однородность наблюдений, то есть постоянство дисперсии случайных ошибок модели.
Теория оценивания — раздел математической статистики, решающий задачи оценивания непосредственно не наблюдаемых параметров сигналов или объектов наблюдения на основе наблюдаемых данных. Для решения задач оценивания применяется параметрический и непараметрический подход. Параметрический подход используется, когда известна математическая модель...
В статистике метод оценки с помощью апостериорного максимума (MAP) тесно связан с методом максимального правдоподобия (ML), но дополнительно при оптимизации использует априорное распределение величины, которую оценивает.

Подробнее: Оценка апостериорного максимума
Стохастическая аппроксимация — рекуррентный метод построения состоятельной последовательности оценок решений уравнений регрессии и экстремумов функций регрессии в задачах непараметрического оценивания. В биологии, химии, медицине используется для анализа результатов опытов. В теории автоматического управления применяется как средство решения задач распознавания, идентификации, обучения и адаптации.
Математи́ческая стати́стика — наука, разрабатывающая математические методы систематизации и использования статистических данных для научных и практических выводов.
Описательная статистика или дескриптивная статистика (англ. descriptive statistics) занимается обработкой эмпирических данных, их систематизацией, наглядным представлением в форме графиков и таблиц, а также их количественным описанием посредством основных статистических показателей.
Байесовская вероятность — это интерпретация понятия вероятности, используемая в байесовской теории. Вероятность определяется как степень уверенности в истинности суждения. Для определения степени уверенности в истинности суждения при получении новой информации в байесовской теории используется теорема Байеса.
Статистический критерий — строгое математическое правило, по которому принимается или отвергается та или иная статистическая гипотеза с известным уровнем значимости. Построение критерия представляет собой выбор подходящей функции от результатов наблюдений (ряда эмпирически полученных значений признака), которая служит для выявления меры расхождения между эмпирическими значениями и гипотетическими.
Доверительный интервал — термин, используемый в математической статистике при интервальной оценке статистических параметров, более предпочтительной при небольшом объёме выборки, чем точечная. Доверительным называют интервал, который покрывает неизвестный параметр с заданной надёжностью.
Некорректное априорное распределение — ситуация, когда в теореме Байеса сумма (интеграл) априорных вероятностей не даёт в результате 1 или вообще не ограничена.
Выборочные моменты в математической статистике — это оценка теоретических моментов распределения на основе выборки.
Гомоскедастичность (англ. homoscedasticity) — однородная вариативность значений наблюдений, выражающаяся в относительной стабильности, гомогенности дисперсии случайной ошибки регрессионной модели. Явление, противоположное гетероскедастичности. Является обязательным предусловием применения метода наименьших квадратов, который может быть использован только для гомоскедастичных наблюдений.
Стандартные ошибки в форме Уайта или состоятельные при гетероскедастичности стандартные ошибки (HC s.e. — Heteroskedasticity consistent standard errors) — применяемая в эконометрике оценка ковариационной матрицы (в частности и стандартных ошибок) МНК-оценок параметров линейной модели регрессии, которая состоятельна при гетероскедастичности случайных ошибок модели, альтернативная стандартной (классической) оценке, которая в данном случае является несостоятельной.
Логарифмический признак сходимости — признак сходимости числовых рядов с положительными членами.
Коэффициент Байеса — это байесовская альтернатива проверке статистических гипотез. Байесовское сравнение моделей — это метод выбора моделей на основе коэффициентов Байеса. Обсуждаемые модели являются статистическими моделями. Целью коэффициента Байеса является количественное выражение поддержки модели по сравнению с другой моделью, независимо от того, верны модели или нет. Техническое определение понятия «поддержка» в контексте байесовского вывода дано ниже.
Вы́борочное (эмпири́ческое) сре́днее — это приближение теоретического среднего распределения, основанное на выборке из него.
Вне́шне несвя́занные уравне́ния (англ. Seemingly Unrelated Regressions (SUR)) — система эконометрических уравнений, каждое из которых является самостоятельным уравнением со своей зависимой и объясняющими экзогенными переменными. Модель предложена Зельнером в 1968 году. Важной особенностью данных уравнений является то, что несмотря на кажущуюся несвязанность уравнений их случайные ошибки предполагаются коррелированными между собой.
Проверка статистических гипотез является содержанием одного из обширных классов задач математической статистики.
Обратная вероятность, по-разному интерпретированная, не была доминирующим подходом к статистике вплоть до развития частотного подхода в начале 20 века Р.А.Фишер, Ежи Нейман и Эгон Пирсон. После разработки частотного подхода, термины частотная и Байесовская развивались при противопоставлении этих подходов, и получили широкое распространение в 1950-х годах.
Смещение вследствие пропущенных переменных (англ. Omitted variable bias) — явление в регрессионном анализе, связанное с получением, смещённых и несостоятельных оценок регрессионных коэффициентов вследствие некорректной спецификации модели, а именно невключения в оцениваемую модель независимых переменных, оказывающих причинно-следственное влияние на зависимую переменную, или невозможности включить в неё некую ненаблюдаемую независимую переменную.
Эргодическая гипотеза (др.-греч. ἔργον — работа и ὁδός — путь) в статистической физике — предположение о том, что средние по времени значения физических величин, характеризующих систему, равны их средним статистическим значениям; служит для обоснования статистической физики.
Экзогенность — буквально «внешнее происхождение» — свойство факторов (и важнейшее требование, предъявляемое к ним) эконометрических моделей, заключающееся в предопределённости, заданности их значений, независимости от функционирования моделируемой системы (явления, процесса). Экзогенность противоположна эндогенности. Значения экзогенных переменных определяется вне модели, и на их основе в рамках рассматриваемой модели определяются значения эндогенных переменных.
Конструктная валидность (концептуальная, понятийная валидность) — частный случай операциональной валидности, степень адекватности метода интерпретации экспериментальных данных теории, которая определяется правильностью употребления терминов той или иной теории.
Тест Хаусмана, называемый также тестом Ву-Хаусмана или Дарбина-Ву-Хаусмана — применяемый в эконометрике тест для сравнения моделей, оцененных разными методами, один из которых позволяет получить состоятельные оценки и при нулевой и при альтернативной гипотезе, а другой — только при нулевой гипотезе.
Объяснительная сила — это способность теории полно и точно описывать собственный объект. Одним из главных критериев объяснительной силы является предсказательная сила, то есть из двух теорий с общим объектом обладающей большей объяснительной силой признаётся та, в рамках которой можно составить более точный и достоверный прогноз.
Критерии нормальности — это группа статистических критериев, предназначенных для проверки нормальности распределения. Критерии нормальности являются частным случаем критериев согласия.
Информационное неравенство (математическая статистика) — неравенство для несмещённой оценки с локально минимальной дисперсией, задающее нижнюю границу для величины дисперсии этой оценки. Играет важную роль в теории асимптотически эффективных оценок.
Кванти́ли распределе́ния хи-квадра́т — числовые характеристики, широко используемые в задачах математической статистики таких как построение доверительных интервалов, проверка статистических гипотез и непараметрическое оценивание.
Стандартные ошибки в форме Ньюи-Уеста или состоятельные при гетероскедастичности и автокорреляции стандартные ошибки (HAC s.e. — Heteroskedasticity and Autocorrelation consistent standard errors) — применяемая в эконометрике оценка ковариационной матрицы МНК-оценок (в частности и стандартных ошибок) параметров линейной модели регрессии, альтернативная стандартной (классической) оценке, которая состоятельна при гетероскедастичности и автокорреляции случайных ошибок модели (в отличие от несостоятельной...
Статистические оценки — это статистики, которые используются для оценивания неизвестных параметров распределений случайной величины.
Выборочная (эмпири́ческая) фу́нкция распределе́ния в математической статистике — это приближение теоретической функции распределения, построенное с помощью выборки из него.
Функция предельного правдоподобия (англ. Marginal Likelihood Function) или интегрированное правдоподобие (англ. integrated likelihood) — это функция правдоподобия, в которой некоторые переменные параметры исключены. В контексте байесовской статистики, функция может называться обоснованностью (англ. evidence) или обоснованностью модели (англ. model evidence).

Подробнее: Предельное правдоподобие
Выборочная дисперсия в математической статистике — это оценка теоретической дисперсии распределения, рассчитанная на основе данных выборки. Виды выборочных дисперсий...
Обобщённый ме́тод моме́нтов (ОММ; англ. GMM — Generalized Method of Moments) — метод, применяемый в математической статистике и эконометрике для оценки неизвестных параметров распределений и эконометрических моделей, являющийся обобщением классического метода моментов. Метод был предложен Хансеном в 1982 году. В отличие от классического метода моментов количество ограничений может быть больше количества оцениваемых параметров.
Логистическая регрессия или логит-регрессия (англ. logit model) — это статистическая модель, используемая для прогнозирования вероятности возникновения некоторого события путём подгонки данных к логистической кривой.
Среднее Тьюки (средневзвешенное Тьюки) представляет собой меру центральной тенденции, относящуюся к разряду устойчивых (робастных) мер. Расчет среднего Тьюки может носить как одношаговый, так и итерационный характер.
В математической статистике неравенством Краме́ра — Ра́о (в честь Гаральда Крамера и К. Р. Рао) называется неравенство, которое при некоторых условиях на статистическую модель даёт нижнюю границу для дисперсии оценки неизвестного параметра, выражая её через информацию Фишера. Известно его обобщение в квантовой теории оценивания (квантовое неравенство Крамера — Рао).
Доказательные вычисления — целенаправленные вычисления на ЭВМ, комбинируемые с аналитическими исследованиями, которые приводят к строгому установлению новых фактов и доказательству теорем.
Метод обобщений (математика) — метод математического творчества, в котором в процессе формирования математического понятия более широкого объёма отбрасываются все второстепенные данные и акцентируется внимание на основных фактах. Этот метод...
Гауссовский процесс назван так в честь Карла Фридриха Гаусса, поскольку в его основе лежит понятие гауссовского распределения (нормального распределения). Гауссовский процесс может рассматриваться как бесконечномерное обобщение многомерных нормальных распределений. Эти процессы применяются в статистическом моделировании; в частности используются свойства нормальности. Например, если случайный процесс моделируется как гауссовский, то распределения различных производных величин, такие как среднее значение...
Теории скрытых параметров — в квантовой механике теории, предложенные для решения проблемы квантовомеханического измерения путём ввода гипотетических внутренних параметров, присущих измеряемым системам (например, частицам). Значения таких параметров не могут быть измерены экспериментально (в частности, они не влияют на собственные значения энергии системы), но определяют результат измерения других параметров системы, описываемых в квантовой механике волновыми функциями и/или векторами состояния...
Теория доказательств — это раздел математической логики, представляющий доказательства в виде формальных математических объектов, осуществляя их анализ с помощью математических методов. Доказательства обычно представляются в виде индуктивно определённых структур данных, таких как списки и деревья, созданных в соответствии с аксиомами и правилами вывода формальных систем. Таким образом, теория доказательств является синтаксической, в отличие от семантической теории моделей. Вместе с теорией моделей...
Статистика — измеримая числовая функция от выборки, не зависящая от неизвестных параметров распределения элементов выборки.
Интервальная оце́нка — это пара чисел в математической статистике, оцениваемых на основе наблюдений, между которыми предположительно находится оцениваемый параметр.
Метаматематика — раздел математической логики, изучающий основания математики, структуру математических доказательств и математических теорий с помощью формальных методов. Термин «метаматематика» буквально означает «за пределами математики».
Крите́рий (др.-греч. κριτήριον — способность различения, средство суждения, мерило) — признак, основание, правило принятия решения по оценке чего-либо на соответствие предъявленным требованиям (мере). Особо выделяют критерии истинности знания. Различают логические (формальные) и эмпирические (экспериментальные) критерии истинности. Формальным критерием истины служат логические законы: истинно всё, что не заключает в себе противоречия, логически правильно. Эмпирическим критерием истинности служит...
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я